NuMA phosphorylation by CDK1 couples mitotic progression with cortical dynein function.

نویسندگان

  • Sachin Kotak
  • Coralie Busso
  • Pierre Gönczy
چکیده

Spindle positioning and spindle elongation are critical for proper cell division. In human cells, an evolutionary conserved ternary complex (NuMA/LGN/Gαi) anchors dynein at the cortex during metaphase, thus ensuring correct spindle positioning. Whether this complex contributes to anaphase spindle elongation is not known. More generally, the mechanisms coupling mitotic progression with spindle behaviour remain elusive. Here, we uncover that levels of cortical dynein markedly increase during anaphase in a NuMA-dependent manner. We demonstrate that during metaphase, CDK1-mediated phosphorylation at T2055 negatively regulates NuMA cortical localization and that this phosphorylation is counteracted by PPP2CA phosphatase activity. We establish that this tug of war is essential for proper levels of cortical dynein and thus spindle positioning during metaphase. Moreover, we find that upon CDK1 inactivation in anaphase, the rise in dephosphorylated NuMA at the cell cortex leads to cortical dynein enrichment, and thus to robust spindle elongation. Our findings uncover a mechanism whereby the status of NuMA phosphorylation coordinates mitotic progression with proper spindle function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NuMA phosphorylation dictates dynein-dependent spindle positioning

What mechanisms ensure that temporal and spatial aspects of mitosis are properly coordinated? Part of the answer to this important question emerged from work published recently, which established that a connection between cell cycle progression and the large coiled-coil protein NuMA is key. The mitotic spindle must be positioned accurately during metaphase and anaphase to ensure that the result...

متن کامل

Cell cycle–regulated membrane binding of NuMA contributes to efficient anaphase chromosome separation

Accurate and efficient separation of sister chromatids during anaphase is critical for faithful cell division. It has been proposed that cortical dynein-generated pulling forces on astral microtubules contribute to anaphase spindle elongation and chromosome separation. In mammalian cells, however, definitive evidence for the involvement of cortical dynein in chromosome separation is missing. It...

متن کامل

NuMA localization, stability, and function in spindle orientation involve 4.1 and Cdk1 interactions

The epidermis is a multilayered epithelium that requires asymmetric divisions for stratification. A conserved cortical protein complex, including LGN, nuclear mitotic apparatus (NuMA), and dynein/dynactin, plays a key role in establishing proper spindle orientation during asymmetric divisions. The requirements for the cortical recruitment of these proteins, however, remain unclear. In this work...

متن کامل

NuMA Phosphorylation by Aurora-A Orchestrates Spindle Orientation

Spindle positioning is essential for tissue morphogenesis and homeostasis. The signaling network synchronizing spindle placement with mitotic progression relies on timely recruitment at the cell cortex of NuMA:LGN:Gαi complexes, in which NuMA acts as a receptor for the microtubule motor Dynein. To study the implication of Aurora-A in spindle orientation, we developed protocols for the partial i...

متن کامل

NuMA interacts with phosphoinositides and links the mitotic spindle with the plasma membrane.

The positioning and the elongation of the mitotic spindle must be carefully regulated. In human cells, the evolutionary conserved proteins LGN/Gαi1-3 anchor the coiled-coil protein NuMA and dynein to the cell cortex during metaphase, thus ensuring proper spindle positioning. The mechanisms governing cortical localization of NuMA and dynein during anaphase remain more elusive. Here, we report th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 32 18  شماره 

صفحات  -

تاریخ انتشار 2013